减速器带电机|三合一电驱动系统的集成化设计

日期:2023-07-13 08:02:40浏览量:276

深圳市鑫希田机电有限公司(艾德克尔ADDKA)是集工业自动化零部件产品、互联网、供应链服务于一体的综合性工厂直销+电商平台, 2005年创立于粤港澳大湾区四大中心城市之一 、国家物流枢纽、国际性综合交通枢纽 、国际科技产业创新中心 、中国三大全国性金融中心之一 深圳市,以代理销售日本松下、三菱、ABB等工业自动化传动产品,为使产品质量不断提高,引进一批高素质的专业技术人员,引进100台/套 日本哈马仪滚齿机、精密全自动磨床、热处理设备、CNC加工中心等生产设备;日本TIT精密齿轮检测设备、铬氏硬度仪、维氏硬度仪等,至力研发、生产高效、节能、环保型的工业传动产品。 2020年为适应客户需要,满足客户期望一站式采购工业自动化零部件需求,公司转型升级,旨在构建以“工业部件+工厂+互联网+供应链”为主体的全新工业品营销方式,打造工业自动化零部件自主生产、线上线下交易、服务、技术支持一体化平台。具有高性价比,正品保证,快速出货,免费3D下载等特点。我们多样化的产品种类与充足的库存使客户可以安心、便捷地搜寻和购买到合适的产品。、充足的现货储备,所有产品质量保障, 深圳市鑫希田机电有限公司为客户提供专业的采购服务,节省客户的时间和成本。

电驱动三合一是乘用车入门级的标配,没有三合一很难敲开乘用车厂的大门。下面,我们先看看我们行业的生存环境。

2020年4月,新能源汽车产销分别完成8.0万辆和7.2万辆,环比增长31.6%和9.7%,同比下降22.1%和26.5%,同比降幅较上个月分别收窄34.8个百分点和26.7个百分点。

1-4月,新能源汽车产销均为20. 5万辆,新能源乘用车累计销售15.5万辆,占75.6%的新能源汽车销量市场份额。

可以看到,行业的寒冬正在消逝,随着市场信心的恢复,我们终会沐浴在盛夏的暖阳下。所以,让我们立足于本职工作,看看怎么做三合一电驱动总成吧。

三合一电驱集成化的优势

①适应性:

三合一电驱需要顶层设计,从车型平台上进行规划,这样可以大幅缩短开发周期,并能在较低成本的代价满足不同客户多样化需求。

②低成本:

减少动力内部的高压线数量、连接器等部件,降低总成的质量,节约连接器及线束成本。

③省空间:

在相对尺寸较小的壳体内整合电机、逆变器、减速器及动力传输模块,解放空间、利于整车布置。

④高能效:

减少或缩短逆变器与电机之间的连接配线,降低了连接部位的电力损耗,提升了驱动系统效率。

⑤易维护:

缩减供应商数量;简化主机厂的装配,提高产品合格率。虽然产品复杂,拆装困难,维修不便,但少了多家供应商的推诿扯皮,效率反而高了,所以说更易维护了。

⑥高可靠性:

共壳体及同轴设计极大的提高了整机的NVH性能,从而提高了总成的可靠性。

三合一电驱集成化的劣势

①高转速带来的NVH挑战;

②冷却概念和轴承寿命;

③EMC复杂性提高;

④跨部门零部件开发协同难度增加等。

三合一的主要构型常见的如上图这几种,其中国内比较流行的是第一种和第五种。

平台化设计

做三合一,必须有顶层设计的理念,从车型平台上进行规划,这样才能延长产品的生命周期,降低整车开发费用。

减速器带电机

模块化设计

根据车型规划的动力性需求,奥迪e-tron电驱系统采用了模块化的开发策略,各个模块排列组合,获得了丰富的产品线,不仅研发进度快,还节约了开发成本,为模块化开发做出了完美的诠释。

上面是系统级的模块设计,下面介绍的是整车级的模块设计,来自ZF公司的电驱桥模块。

三合一壳体集成化设计路线示例

宝马第五代电驱系统做到了电机、电控、减速器共壳体的设计,是目前最为热衷的方案之一。我们举例看下各种技术方案的演化过程。

从方案⑧中可知,在部件产品力未经充分验证的情况下,贸然集成反而会因系统故障率高而丢掉所有集成化带来的经济效益,正所谓过犹不及,适可而止。所以,集成要看自己所能掌控技术和设备能否满足设计需要,适合的才是最好的。我最初工作的单位,做了三种车型的AMT,最终都倒在了耐久性试验那关,项目都失败了。

总结一下三合一的设计技巧或方案

先看看比亚迪是怎么做的:

电机、电控端子直连,取消三相线。降低成本。

电机、电控水道直连,取消水管。降低成本。

电机转子轴和减速器输入轴共用。提高同轴度,减少噪音。

减速器带电机

电机壳体和减速器壳体共用。降低成本,提高同轴度,提高装配精度。

总成效果图

方正电机三合一结构设计范例

电机、减速器及控制器三合为一,高度集成化设计;

模块组合化设计,电机、减速器与二合一模块同平台;

简化电机与控制器的高压线缆,连接器等部件;

电机轴与减速器输入轴合为一体,减少轴承支撑;

减速器壳体与电机壳体合为一体,

电机端盖与控制器壳体合为一体;

动力系采用平行式结构;

采用锥齿轮结构差速器;

机械式里程表输出(可选);

电子驻车机构(可选);

集成整车控制单元(可选);

集成电子驻车系统(可选)。

以上两家的产品均已量产,在市场上均取得了不错的口碑,证明结构方案是可行的,具有学习和推广的价值。

接下来,让我们欣赏一下国际大厂奥迪e-tron的电驱产品设计方案:

APA250

AKA320

APA250转子轴水道

减速器带电机

舍弗勒双行星排减速器

奥迪e-tron三合一总结

1、奥迪e-tron的平行轴三合一系统选择电机与减速机的共壳体方案,电机控制器做为单独的模块与电机壳体共享连接端口,进行铜排直连;

2、电机控制器作为通用模块可以应用与四种不同的产品型号中;

3、转子运用空心轴技术,在轻量化的同时还能被充分冷却;

4、最大的亮点无疑是对交流异步电机无处不在的充分冷却,水路先后经过电机控制器、轴承座板、转子轴、定子外壳、对面的轴承座板后流出到散热器;

5、大量的运用行星排减速器、外外啮合双星行星排差速器,结构紧凑规整;

6、奥迪在后轴双电机方案上采用的电子差速器代替机械差速器,提高了传动效率,降低了硬件成本。

吉凯恩三合一电驱爆炸图

奔驰EQ3的电驱爆炸图

这二者的方案,与国内流行的三合一方案高度一致,巨一、上汽、精进等都有类似电驱总成产品。

目前,大多动力总成搭载的都是单速比的减速器,在某些工况电机不能在经济区工作,导致系统能耗高,续驶里程低。2挡以上的变速箱则能很好的解决这一问题,并提供更加可观的动力性表现。

EV两挡方案的技术路线

总结一下未来集成的可能趋势

多套热管理系统集成;

大规模集拓扑电路集成;

多功能复合结构设计,工艺集成;

减少物理性连接,降低成本;

汽车智能化,部分机械部件被取消,如机械差速器。

以上内容为用户投稿,如有侵权请联系我们删除!